Kimble, H. J. The quantum web. Nature 453, 1023–1030 (2008).
Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. In Proc. Int. Conf. on Computer systems, Techniques and Sign Processing Vol. 1, 175–179 (IEEE Pc Society, IEEE Circuits and Techniques Society, Indian Institute of Science, 1984).
Shor, P. W. & Preskill, J. Easy proof of safety of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000).
Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).
Boaron, A. et al. Safe quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018).
Zhang, Q., Xu, F., Chen, Y.-A., Peng, C.-Z. & Pan, J.-W. Massive scale quantum key distribution: challenges and options. Decide. Specific 26, 24260–24273 (2018).
Pirandola, S. et al. Advances in quantum cryptography. Preprint at http://arxiv.org/abs/1906.01645 (2019).
Pirandola, S., Laurenza, R., Ottaviani, C. & Banchi, L. Elementary limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017).
Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the position of imperfect native operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).
Chou, C.-W. et al. Practical quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1320 (2007).
Yuan, Z.-S. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008).
Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Statement of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430(2012).
Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015).
Hensen, B. et al. Loophole-free Bell inequality violation utilizing electron spins separated by 1.Three kilometres. Nature 526, 682–686 (2015).
Kalb, N. et al. Entanglement distillation between solid-state quantum community nodes. Science 356, 928–932 (2017).
Kaneda, F., Xu, F., Chapman, J. & Kwiat, P. G. Quantum-memory-assisted multi-photon era for environment friendly quantum info processing. Optica 4, 1034–1037 (2017).
Evans, R. E. et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 362, 662–665 (2018).
Burek, M. J. et al. Fiber-coupled diamond quantum nanophotonic interface. Phys. Rev. Appl. 8, 024026 (2017).
Nguyen, C. T. et al. Quantum community nodes primarily based on diamond qubits with an environment friendly nanophotonic interface. Phys. Rev. Lett. 123, 183602 (2019).
Khabiboulline, E. T., Borregaard, J., De Greve, Ok. & Lukin, M. D. Optical interferometry with quantum networks. Phys. Rev. Lett. 123, 070504 (2019).
Monroe, C. et al. Massive-scale modular quantum-computer structure with atomic reminiscence and photonic interconnects. Phys. Rev. A 89, 022317 (2014).
Lo, H.-Ok., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).
Braunstein, S. L. & Pirandola, S. Aspect-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012).
Minder, M. et al. Experimental quantum key distribution past the repeaterless secret key capability. Nat. Photon. 13, 334–338 (2019).
Panayi, C., Razavi, M., Ma, X. & Lütkenhaus, N. Reminiscence-assisted measurement-device-independent quantum key distribution. New J. Phys. 16, 043005 (2014).
Lo, H.-Ok., Ma, X. & Chen, Ok. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).
Lo, H.-Ok., Chau, H. F. & Ardehali, M. Environment friendly quantum key distribution scheme and a proof of its unconditional safety. J. Cryptol. 18, 133–165 (2005).
Curty, M. et al. Finite-key evaluation for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014).
Duan, L.-M. & Kimble, H. J. Scalable photonic quantum computation by way of cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).
Biham, E., Huttner, B. & Mor, T. Quantum cryptographic community primarily based on quantum reminiscences. Phys. Rev. A 54, 2651–2658 (1996).
Machielse, B. et al. Quantum interference of electromechanically stabilized emitters in nanophotonic gadgets. Phys. Rev. X 9, 031022 (2019).
Raussendorf, R. & Briegel, H. J. A one-way quantum laptop. Phys. Rev. Lett. 86, 5188–5191 (2001).
Borregaard, J. et al. One-way quantum repeater primarily based on near-deterministic photon-emitter interfaces. Preprint at http://arxiv.org/abs/1907.05101 (2019).
Trusheim, M. E. et al. Lead-related quantum emitters in diamond. Phys. Rev. B 99, 075430 (2019).
Meesala, S. et al. Pressure engineering of the silicon-vacancy heart in diamond. Phys. Rev. B 97, 205444 (2018).
Burek, M. J. et al. Top quality-factor optical nanocavities in bulk single-crystal diamond. Nat. Commun. 5, 5718 (2014).
Atikian, H. A. et al. Freestanding nanostructures by way of reactive ion beam angled etching. APL Photon. 2, 051301 (2017).
Nguyen, C. T. et al. An built-in nanophotonic quantum register primarily based on silicon-vacancy spins in diamond. Phys. Rev. B 100, 165428 (2019).
de Riedmatten, H. et al. Tailoring photonic entanglement in high-dimensional Hilbert areas. Phys. Rev. A 69, 050304 (2004).
Sasaki, T., Yamamoto, Y. & Koashi, M. Sensible quantum key distribution protocol with out monitoring sign disturbance. Nature 509, 475 (2014).